Reputation-based Self-management of Software Process
Artifact Quality in Consortium Research Projects

Christian R. Prause
Fraunhofer FIT
Schloss Birlinghoven, Sankt Augustin, Germany
christian.prause@fit.fraunhofer.de

ABSTRACT

This paper proposes a PhD research that deals with improv-
ing internal documentation in software projects. Software
developers often do not like to create documentation be-
cause it has few value to the individual himself. Yet the pur-
pose of internal documentation is to help others understand
the software and the problem it addresses. Documentation
increases development speed, reduces software maintenance
costs, helps to keep development on track, and mitigates the
negative effects of distance in distributed settings. This re-
search aims to increase the individuals’ motivation to write
documentation by means of reputation. The CollabReview
prototype is a web-based reputation system that analyzes
artifacts of internal documentation to derive personal repu-
tation scores. Developers making many good contributions
will achieve higher reputation scores. These scores can then
be employed to softly influence developer behavior, e.g. by
incentivizing them to contribute to documentation with so-
cial rewards. No strict rule enforcement is necessary.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Documentation; D.2.9 [Ma-
nagement]: Software quality assurance

General Terms

Documentation, Human Factors, Management, Measurement

Keywords

software quality, documentation, collaboration, reputation

1. INTRODUCTION AND BACKGROUND

Source code is the most precise description of a software
[9]. It contains all the detailed knowledge. Other artifacts
of the software process like requirements, designs, rationale
and so forth are no less important to humans for under-
standing. This internal documentation encompasses all in-

PREPRINT. This is the author's version of the work. It is posted here
for your personal use. Not for redistribution. The definitive version
was published in the following publication:

ESEC/FSE’11, September 5-9, 2011, Szeged, Hungary. ACM.

DOI: https://doi.org/10.1145/2025113.2025166

Self-archived at: https://www.drprause.de/publications/

formation that originated from the development of a soft-
ware product. It is bound for developers and maintainers,
and is internal to the organization and project [11]. (Exter-
nal documentation is not treated here.) Due to complexity,
a large software system is difficult to understand. But a cer-
tain understanding is necessary to modify it. Working on it
is therefore a continuous learning process. Documentation
is the learning material that provides developers with the
knowledge that enables them to modify and extend a soft-
ware [18]. It serves as a reference to the original developer
but is especially valuable to others [25].

In general, research must deliver results that are well us-
able in the next phase of the innovation process. Funda-
mental research delivers proven concepts; applied research
creates prototypes and runs pilots to demonstrate that a
certain design is suitable and works as expected. Prototypes
bridge the gap between research and industrial products.

Prototypes are cheap and light-weight versions of software
that can later be extended into full-fledged products [13].
They may have bugs, miss features and look crude but the
knowledge obtained through them must be preserved. The
nearer development draws to its product phase, the more
important becomes engineering and the precise knowledge
of construction details and design rationale. Only then is
incremental refinement possible, and can lead to products.

The majority of projects co-funded under the European
Union (EU) Framework Programmes (FPs) are applied re-
search projects, i.e. projects conducting ambitious research
with the goal of subsequent industrial exploitation. Research
consortia bring together universities, research institutes and
small to large industry partners from several different coun-
tries. However, documentation is a particularly intricate
matter in this environment (see Section 2).

The thesis research deals with improving software devel-
opment in distributed, multi-partner research projects by
motivating developers to contribute more to documentation.
It applies reputation and economic theory elements to the
software process to enable self-management of documenta-
tion. Documentation is considered as a common property
that is subject to the “tragedy of commons” (see [8]) — the
decay of a valuable resource due to a misalignment between
individual and social cost: Documentation has few value to
the individual developer but costs him his own precious time
to produce [25]. Yet for the whole team, the total “social”
cost of not having good documentation is much higher [24].

There are two strategies for preventing poor documenta-
tion quality: one is to enforce strict regulations on the usage
of the common property, the other one is to internalize social


https://doi.org/10.1145/2025113.2025166
https://www.drprause.de/publications/
https://doi.org/10.1145/2025113.2025166
https://www.drprause.de/publications/

cost [4]. Most current approaches follow the first strategy
(see Section 3). This research focuses on the second strategy.

The idea is to assign personal responsibility for collabo-
ratively created and used artifacts (source code, wiki pages,
...), and thus internalize common property. Internalizing
means that the social cost of degeneration is partially trans-
ferred to individuals that consequently have a higher interest
in preventing degeneration [4]. The CollabReview platform
was developed as tool-support for automatically internaliz-
ing common properties in a software project (Section 4).

Improving internal documentation reduces project costs
and increases quality, [24] and thereby makes industrial ex-
ploitation easier and more probable. Compared to approaches
based on regulation, internalizing common properties could
lessen the need for strict quality prescriptions and instead
give developers more flexibility. Additionally, fewer quality
control would be necessary, reducing quality control costs
and, more importantly, being more suitable in consortium-
based projects with flat hierarchies (see Section 6).

2. PROBLEM DESCRIPTION

A lack of high quality documentation is a pervasive prob-
lem in software projects. For example, a study of 500 data
processing organizations finds that poor documentation is
one of the biggest problems [14]. The role and maintenance
of documentation is either poorly understood, or documen-
tation does not exist at all because of other project pres-
sures [7, 5]. Software developers are famous for their dislike
of documentation, often trying to avoid doing it altogether
[25]. Wray asks “Why do we persist in poor programming
practices when we know they’re poor?” [30]. Boehm calls
it the “cowboy role model” of young developers [2]. Even
for prototype projects in research, insufficient documenta-
tion is a problem when a later project continues the initial
research but the original developers and their knowledge are
not available anymore [21].

During the last years, I gained insight into a family of
projects where improving software processes is difficult. With
its FPs, the European Commission (EC) co-funds hundreds
of so-called “cooperative projects” with an average cost of
more than 5M Euros each year. These projects are signi-
fied by a high degree of distributedness because they involve
multiple partners by definition. The partners come from
several countries, and have different organizational back-
grounds: small- and medium-sized enterprises, large corpo-
rations, universities and research institutes [22]. Obtaining
high quality documentation is challenging but nonetheless
important for the demanded industrial exploitation.

In a consortium project, partners will try to minimize
their own problems at the expense of others [5] and pri-
oritize practices differently. For example, writing documen-
tation can be considered overly bureaucratic by some, too
clumsy by others or just unsuitable. However, as consor-
tium management has a weaker position here than project
management in projects conducted by a single entity, agreed
documentation standards are difficult to establish.

For example, towards the end of one project, telephone
conferences and email discussions were held frequently to
try to jointly reconstruct knowledge of the actual workings
of the system. Meanwhile, since commercial exploitation
opportunities increased, even a reimplementation was dis-
cussed. A software system from an earlier project was in
such a bad condition that one developer, when leaving for

a new job, recommended “to fight tooth and nail” to never
have to maintain that system. In another project, some
partners had never worked with a wiki before, and prevented
that it was established as a primary point of reference. So it
contained only few documentation while other documenta-
tion was distributed over reports delivered to the EC. One
partner resigningly noted that getting documentation from
partners was like “trying to get blood out of stone”. De-
velopers mostly avoided writing messages when committing
source code to revision control, or rarely committed twice a
year. Entering bug reports into a tracker was seen as bu-
reaucratic. Therefore not a single report was filed, although
issue tracking is pivotal for knowledge management [1].

Poor quality and the non-existence of certain software pro-
cess artifacts means that knowledge is not (adequately) pre-
served. When it fades from the developers minds, it is either
lost forever, or has to be recovered or recreated in a costly
process. For instance, understanding a software architecture
from source code only is extremely difficult, guessing non-
functional requirements from an implementation comes close
to impracticality, and throwing away code means to lose all
the implementation subtleties. The thorough use documen-
tation therefore actually speeds implementation and reduces
total cost in the long run [24].

3. RELATED WORK

Organizational operation is characterized by the dimen-
sions certainty and agreement. Where there is low certainty
of the effects of actions and low agreement between agents
about the nature of an issue, processes are difficult to es-
tablish, or can even be harmful [27]. EU projects operate in
this area. Heavy-weight processes are therefore not suitable.

Approaches like the “Don’t repeat yourself” [26] principle
aim at reducing the developers’ effort when creating docu-
mentation. Similarly, tools like Javadoc can generate certain
documentation by analyzing source code, or relate existing
pieces of documentation [16]. However, manually created
documentation that explains the complex backgrounds of
software will always be necessary [24].

It seems that a certain amount of continuous pressure to
force a change in developer behavior — either through rules
and enforcement, or incentives — is necessary [20]. Pair
programming has been identified as a source of pair-pressure
that reduces bad habits [29]. Also, Extreme Programming
reduces the need for documentation through an active direct
exchange of knowledge in the team, and with customers.
But in EU projects, team sizes at each partner’s site are
often less than five people [22]. Here, knowledge transfer
between sites has to take different forms. Similarly, coding
and documentation rules are difficult to enforce across sites.

Relevant to this research are furthermore concepts that
attempt to alter user behavior through rewards. Successful
examples exist in very different domains: One example is
the “Thief of the Week award” that rewards developers who
re-use code instead of developing it anew [15]. In pervasive
computing, Yamabe et al. showed that micro-payments can
have a significant impact on user behavior [31]. Since the
advent of the Internet, reputation systems have become an
important factor in online communities to alter user behav-
ior [12]. Social rewards are applied to wikis in work places
to motivate employees to contribute [10, 6]. Although met-
rics are important in software development, they have to be
used with care because they might be perceived as threats



to developers’ careers. Also, metrics might fail and not tell
the truth, or be manipulated by developers [28].

4. THESIS STATEMENT

There is no universal documentation method. This holds
true for research projects, too, where the predominant form
of organization is self-organization. Only the individual de-
veloper can effectively decide what is worth documenting
and what not. As the purpose of documentation is to im-
part knowledge in its audience, it has to be judged based on
this ability. It may, for instance, be incomplete and still be
appreciated, as long as the necessary information is conveyed
[7]. By adding a little motivation to do documentation, de-
velopers may be willing to contribute more. I claim that...

“Internalizing software process artifacts with a
reputation-based software tool in combination with
suitable rewards, encourages the individual developer
himself to care more for the quality of the project
team’s common property.”

To allow researching this claim, the CollabReview plat-
form has been developed. CollabReview is a reputation sys-
tem that analyzes how developers interact with the common
properties. A developer who often makes high-quality con-
tributions will consequently receive a high reputation score.
The scores are then exploited to influence developer behav-
ior. For example, publishing all developers’ scores to the
team can reward well-behaving developers. But also social
games, computing personal technical debt with respect to
documentation [3], or tangible rewards are possible.

In order to compute reputation scores, CollabReview as-
sesses the quality of each artifact of documentation, and
determines who contributed to it. The quality of an artifact
of documentation is determined by voting (called review).
Feedback from developers as well as results of automatic
analyses (e.g. static analysis) are collected, and then av-
eraged to compute the quality rating for that artifact. To
account for out-of-date reviews, reviews are weighted accord-
ing to their timeliness. Timeliness is based on how much the
reviewed artifact has changed since the review [19].

The developers’ contribution to an artifact is calculated by
CollabReview through authorship. Text that is contributed
to the artifact by a developer, is said to be authored by
that developer. A developer who owns much of the text of
an artifact, has a high responsibility for the artifact. For
instance, if half of the text of an artifact was written by
a certain developer, then that developer will have half of
the responsibility for the artifact. CollabReview compares
different revisions of an artifact to determine authorship.

Each new revision of an article is compared with several of
its probable ancestors. When an optimal candidate has been
found, the algorithm determines an author for the newly
added or modified lines; unmodified lines will retain their
authorship information. If a non-trivial line (e.g. one that
contains only whitespace) is found to be a clone of an already
existing line, authorship information is copied from there.
Otherwise the revision’s creator is author of the line [17].

5. APPROACH AND CONTRIBUTIONS

The thesis research interconnects different scientific ar-
eas. At a technical level, there are analyses of project com-
mon property to obtain authorship, and quality informa-
tion through static analysis and reviews. At a higher level,

software processes, collaboration, motivation and economic
aspects must be considered. A solution cannot be purely
technical, theoretical or conceptional.

The research therefore loosely follows a user-centered de-
sign approach. Yet the proposed solution was not explicitly
demanded by users. Instead, it is developed to exploit po-
tential for improvement. However, concept and prototype
are developed iteratively with frequent user involvement.

Years of project experience led to the observation of prob-
lems as described in Section 2. Conventional software pro-
cess improvement techniques were difficult to establish in
these environments. An empirical study involving 100 re-
spondents from 50 EU projects was conducted to define a
frame of reference for the personal project experiences [22].

An initial set of requirements was gathered from personal
experience. They were used to draft a solution concept, and
were discussed with colleagues. Refinements to the concept
were based on existing literature [20]. After this, the initial
CollabReview prototype was implemented [19]. The concept
was presented and discussed in three expert rounds to gen-
erate conceptual feedback. This feedback led to refinements
of the concept, and further requirements and constraints.

CollabReview was tested with source code from two real
projects (one EU and one open source project). The goal
was to show that the prototype can handle real-world data
and produce sensible results. Adaptations were necessary to
make the prototype capable of handling the large datasets
that occur in reality. A source code evolution algorithm
was developed to improve handling of moved code, and to
increase the tampering resistance of CollabReview’s author-
ship analysis [17]. For source code, CollabReview’s way of
computing reputation has been validated. Validation was
possible because static analysis can cheaply generate objec-
tive quality data. The validation first computed develop-
ers’ reputation scores, and then used the reputation scores
to predict source code quality in a 10-fold cross validation.
The results showed a significant, substantial correlation of
r ~ 0.4. While prediction is not highly accurate, it shows
that reputation scores work as indicators for prediction, and
are therefore sound. (Publication pending.)

In parallel to this, a survey of rewards used in practice was
conducted. From this survey, twelve dimensions of the in-
centives space were identified and aligned with the responses
of 16 subjects working in EU projects [23]. This information
directed the search for a suitable rewarding mechanism.

Moknowpedia, the knowledge management wiki of the
Mobile Knowledge workgroup, was chosen as a first field-
test environment for the CollabReview platform. The pro-
totype was adapted to process wiki articles instead of source
code. Its user interfaces were reworked for seamless integra-
tion with the wiki. In a two months trial, the effects of the
extensions to Moknowpedia were evaluated. Significant im-
provements to article quantity and quality were measurable
as well as perceived by the users [6]. The reception of the
platform was mostly positive, and it keeps being in use even
after the evaluation has ended. The experiences gathered
with the enhanced Moknowpedia informed further design
decisions. Work is in progress to improve the reputation-
based rewarding scheme to make it more effective.

6. EVALUATION

This section details the plans for the final evaluation of
the concept. (Section 5 lists validations and evaluations that



were already conducted.) The final evaluation is scheduled
for 2011. It concludes the thesis research with field-tests in
EU projects, and a laboratory experiment.

CollabReview is currently being integrated with the GForge
software project infrastructure that is used in several EU
projects. The integration with GForge will enable field-tests
in two EU projects with up to 100 developers from different
European countries. In these field-tests, the effects on both
source code quality and wiki articles are investigated, and
developer reactions are studied.

The laboratory experiment will test the researched con-
cept under controlled conditions. Two groups of users, con-
trol groups and experimental groups, will implement the
same, specified, small software. While the experimental
group will be using CollabReview, CollabReview will not
be installed in the control group.

Acknowledgment

This work is co-funded by the ebbits EU FP7 project under
grant agreement no. 257852.

7. REFERENCES

[1] D. Bertram, A. Voida, S. Greenberg, and R. Walker.
Communication, collaboration, and bugs: the social
nature of issue tracking in small, collocated teams. In
CSCW, pages 291-300. ACM, 2010.

[2] B. Boehm. Get ready for agile methods, with care.
Computer, 35:64-69, 2002.

[3] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim,

P. Kruchten, E. Lim, A. MacCormack, R. Nord,

I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan, and
N. Zazworka. Managing technical debt in
software-reliant systems. In FoSER. ACM, 2010.

[4] R. H. Coase. The problem of social cost. The Journal
of Law and Economics, 3(1):1-44, 1960.

[5] B. Curtis, H. Krasner, and N. Iscoe. A field study of
the software design process for large systems.
Communications of the ACM, 31:1268-1287, 1988.

[6] S. Dencheva, C. R. Prause, and W. Prinz. Dynamic
self-moderation in a corporate wiki to improve
participation and contribution quality. In Eur. Conf.
Comp.-Supp. Coop. Work, ECSCW. Springer, 2011.

[7] A. Forward and T. C. Lethbridge. The relevance of
software documentation, tools and technologies: a
survey. In DocEng, pages 26-33. ACM, 2002.

[8] G. Hardin. The tragedy of the commons. Science,
162:1243-1248, 1968.

[9] M. Harman. Why source code analysis and manipula-
tion will always be important. In SCAM. IEEE, 2010.

[10] B. Hoisl, W. Aigner, and S. Miksch. Social rewarding
in wiki systems — motivating the community. In
Online Communities and Soc. Comp. Springer, 2007.

[11] A. Hunt and D. Thomas. The Pragmatic Programmer.
Addison-Wesley Longman, 1999.

[12] A. Jgsang, R. Ismail, and C. Boyd. A survey of trust
and reputation systems for online service provision.
Decision Support Systems, 43(2):618-644, 2007.

[13] W. E. Lewis. Software Testing and Continuous
Quality Improvement. Auerbach, 2005.

[14] B. P. Lientz and E. B. Swanson. Problems in

(15]

(16]

(17]

18]

(19]

20]

21]

(22]

23]

(24]
25]
(26]

27]

(28]

29]

(30]

(31]

application software maintenance. Communications of
the ACM, 24(11):763-769, 1981.

J. S. Poulin. Populating software repositories:
Incentives and domain-specific software. Journal of
Systems and Software, 30:187-199, 1995.

C. Prause, J. Kuck, S. Apelt, R. Oppermann, and

A. B. Cremers. Interconnecting documentation -
harnessing the different powers of current
documentation tools in software development. In Ninth
ICFEIS, volume ISAS, pages 63-68. INSTICC, 2007.
C. R. Prause. Maintaining fine-grained code metadata
regardless of moving, copying and merging. In 9th
International Working Conference on Source Code
Analysis and Manipulation, SCAM. IEEE, 2009.

C. R. Prause. A software project perspective on the
fitness and evolvability of personal learning
environments. In Ezploring the Fitness and
Evolvability of Personal Learning Environments, 2011.
C. R. Prause and S. Apelt. An approach for
continuous inspection of source code. In International
Workshop on Software quality, WoSQ. ACM, 2008.

C. R. Prause and M. Eisenhauer. Social aspects of a
continuous inspection platform for software source
code. In Workshop on Cooperative and Human Aspects
of Software Engineering, CHASE. ACM, 2008.

C. R. Prause, M. Jentsch, and M. Eisenhauer. Mica -
a mobile support system for warehouse workers.
International Journal of Handheld Computing
Research (IJHCR), 2(1):1-24, January-March 2011.
C. R. Prause, R. Reiners, and S. Dencheva. Empirical
study of tool support in highly distributed research
projects. In 5th International Conference on Global
Software Engineering, ICGSE, pages 23-32. IEEE
Computer Society, 2010.

C. R. Prause, R. Reiners, S. Dencheva, and

A. Zimmermann. Incentives for maintaining high-
quality source code. In Psychology of Programming
Work in Progress Meeting, PPIG WiP, 2010.

J. Raskin. Comments are more important than code.
ACM Queue, 3(2):64-62 (sic!), 2005.

B. Selic. Agile documentation, anyone? IEEE
Software, 26(6):11-12, Nov/Dec 2009.

D. Spinellis. Code documentation. IEEE Software,
27:18-19, 2010.

R. D. Stacey. Strategic Management and
Organisational Dynamics: the challenge of complexity.
Financial Times, 1999.

M. Umarji and F. Shull. Measuring developers:
Aligning perspectives and other best practices. IEEE
Software, 26(6):92-94, Nov./Dec. 2009.

L. Williams and B. Kessler. The effects of
"pair-pressure” and "pair-learning” on software
engineering education. In 13th Conference on Software
Engineering Education & Training. IEEE, 2000.

S. Wray. How pair programming really works. I[EEE
Software, 27:50-55, 2009.

T. Yamabe, V. Lehdonvirta, H. Ito, H. Soma,

H. Kimura, and T. Nakajima. Applying pervasive
technologies to create economic incentives that alter
consumer behavior. In UbiComp. ACM, 2009.





