
Empirical Study of Tool Support in Highly
Distributed Research Projects

Christian R. Prause
Fraunhofer FIT

Schloss Birlinghoven
53754 Sankt Augustin

christian.prause@fit.fraunhofer.de

René Reiners
Fraunhofer FIT

Schloss Birlinghoven
53754 Sankt Augustin

rene.reiners@fit.fraunhofer.de

Silviya Dencheva
Fraunhofer FIT

Schloss Birlinghoven
53754 Sankt Augustin

silviya.dencheva@fit.fraunhofer.de

Abstract—The EU subsidizes research projects in the ICT area
with hundreds of millions of Euros per year with the aim of
strengthening Europe’s global competitiveness. A key require-
ment of EU projects is the involvement of partners from at least
three different countries. This leads to highly distributed software
environments where company, country, and culture boundaries
run in the midst of tasks like requirements engineering, architec-
tural design, implementation or testing. We present results from
an empirical study involving more than 50 transnational, multi-
million Euro projects of the Sixth Framework Programme. The
results show which tools are accepted by developers and used in
practice in the respective phases of the software process. Finally,
we shape the idea of Research Software Engineering.

This is the peer reviewed version of the following paper: C.R. Prause, R. Reiners, S. Dencheva. Empirical Study of Tool Support in Highly
Distributed Research Projects. 5th International Conference on Global Software Engineer (ICGSE), Princeton, NJ, USA, pp. 23–32. See
https://doi.org/10.1109/ICGSE.2010.13.. This version of the paper is posted here in accordance with the terms and conditions for use of
self-archived versions. Self-archived at: https://www.drprause.de/publications/ICGSE2010-SoftEngPoll.pdf. BIBTEX

I. INTRODUCTION

Based on the treaty establishing the European Union (EU),
Framework Programmes serve two main strategic objectives1:
(i.) to strengthen the scientific and technological bases of
industry and (ii.) to encourage international competitiveness
while promoting research activities in support of EU poli-
cies. One such framework is the Sixth Framework Programme
(FP6), running from 2002 until 2010 with a total co-funding
(EU pays about 75%) of 18 billion Euros. About 1000 projects
with a total cost of about 5.5 billion Euros are co-funded in
this way with about 4 billion Euros in the area of Information
and Communication Technology (ICT).

The core of FP6 are collaborative projects that also account
for the main funding. Collaborative projects are either large-
scale Integrating Projects (IP) (funded with tens of millions of
Euros) or Specific Targeted REsearch Projects (STREP) (sev-
eral hundreds of thousands of Euros). A key requirement for
funding is that projects include partners from at least three dif-
ferent countries. In practice, research consortia consist of part-
ners from even more different countries. Similarly important
is the involvement of both industrial and academic institutions,
including universities, research institutes, small and medium-
sized enterprises, large IT corporations, or even public bodies.
We find from the survey in Section III that about 60% of our
respondents consider themselves as academic partners, while
almost 40% come from industry.

1http://cordis.europa.eu/fp6/fp6 glance.htm

These research projects are a third kind of projects besides
industrial and free open source projects that are nonetheless
interesting to software engineering with an average cost of
more than 5M Euros per project. Of course, compared to in-
dustry and open source projects, research projects are a bit
different. EU projects share with industrial projects monetary
factors but there is less pressure for software cost and quality.
This is especially true for academic partners; to them soft-
ware quality and cost reduction is secondary. Instead they aim
for publications at high-reputation venues [12]. The projects’
experimental character makes success and failure difficult to
measure. Success is largely based on a review conducted once
per year where the European Commission (EC) — as the ex-
ecutive branch of the EU — assesses if project progress seems
reasonable and on schedule. Furthermore, there are no global
competitors as EU projects are mostly restricted to European
countries. Hence competition is not as fierce as in the free mar-
ket. Therefore outsourcing and software process improvement
are not equally necessary. EU projects share with open source
projects a high degree of distributed development and volun-
teering to assume tasks. Yet developers might not be similarly
motivated to develop good software [8].

Although EU projects involve academic research partners
and have to generate scientific publications, they still tackle
specific challenges and are required to create industrially ex-
ploitable solutions. For example, the Hydra Project2 builds a
middleware for embedded systems, is expected to set new stan-
dards, and generates an open source implementation. Industri-
ally exploitable research results are a necessity to strengthen
Europe’s global competitiveness, and are some kind of Return
on Investment (ROI) for the EU.

It is the nature of EU projects that company, country, cul-
ture and language boundaries run straight through the midst of
a project task. It is not one partner that is responsible for re-
quirements engineering but several. Similarly, several partners
will do architecture design, implementation work, testing, and
so on. This causes high communicational and, as project con-
sortia build on flat hierarchies with friendly cooperation, also
high self-organizational needs.

We ourselves have participated in several EU projects. Pro-

2http://hydramiddleware.eu

https://doi.org/10.1109/ICGSE.2010.13
https://www.drprause.de/publications/
https://www.drprause.de/publications/ICGSE2010-SoftEngPoll.pdf
https://www.drprause.de/publications/bibtex/ICGSE2010-SoftEngPoll.bib
http://cordis.europa.eu/fp6/fp6_glance.htm


C.R. Prause, R. Reiners, S. Dencheva — Empirical Study of Tool Support in Highly Distributed Research Projects 2

cesses out of the schoolbook are difficult to implement some-
times. Even simple best practices like using the common Sub-
version repository to exchange code instead of distributing
code via Skype can be hard to establish. A Subversion fil-
ter that rejects checking in of compilation results can make
partners refuse to use it. Often there is almost no exchange
of necessary documentation between partners, or it happens
through outdated deliverables. And requesting partners to write
Javadoc documentation can be considered overly bureaucracy
by some. However, this is not malevolent behavior! It reflects
that certain practices are just differently prioritized by different
partners, or considered too clumsy or just unsuitable.

However, other approaches — like a Jira3-based Volere pro-
cess for distributed requirements engineering — were success-
fully used in such environments [16]. In general, processes are
the result of consensus in a consortium of equitable partners
and not established by force of a single higher instance.

We became curious about the general situation in such
projects (see Section II) and how they deal with the different
tasks of a distributed software life cycle. We analyze research
projects by surveying their tool usage through a questionnaire.
Additionally, we capture developers’ opinions on the useful-
ness of respective kinds of tools (see Section III). Although the
validity of our survey is exposed to some threats (see Section
IV), we discuss lessons learned from a valuable first glance
at practices of a multi-billion Euro research “industry” that
has been widely omitted from software engineering research
(see Section V). But as well as research can learn from in-
dustrial rigor in distributed development, industry can learn
from a community that has a large amount of experience in
extremely distributed software development (see Section VI).
Therefore, we propose that methods from industry projects
will be taken into account and modified to suit the needs of
research projects (see Section VII). The survey presented in
the following sections will help us to find this out.

II. SURVEY SCOPE AND REALIZATION

According to the IEEE Standard for Software Life Cycle
Processes [2], software development entails a variety of pro-
cesses that are categorized in groups like Project Management,
Post-development, etc. However, not all processes are applica-
ble or mandatory for the execution of a software project. We
focus on processes of the “Development” process group but
also include a few processes from other groups.

Relevant to our study are tools that support management,
collaboration and communication, quality improvement or
other key tasks of the software life cycle. For example, man-
aging requirements can be considered a key process in all
software projects, and usually there is a single tool that sup-
ports this process. Yet for other processes such exclusivity is
not given: the Implementation process is usually supported by
a variety of tools like integrated development environments
(IDE), profilers, debuggers, programming languages and so
on. It would have been an impractically tedious task to ask

3http://www.atlassian.com/software/jira/

developers about all facets of their development environment.
Instead, we chose to leave out tools that support the individ-
ual developer only in this survey as they do not directly affect
the distributed groups’ workflows.

Similarly, we decided that tools should be broadly appli-
cable to software development, and not be domain-specific or
serve a small niche. Apache Axis, for example, includes a tool
that generates WebService source code in Java from Web Ser-
vices Description Language (WSDL) files and simplifies soft-
ware development, but it is specific to the WebService-domain.
Likewise, model checkers address a niche where extreme re-
liability is required. So we decided to exclude such tools. But
still we include static analysis tools (see Section III-B) because
they can be used in the project and collaboration context (apart
from personal IDEs), for example, in continuous integration
servers to promote good coding styles [3].

The rest of this section deals with the conduction of the sur-
vey, explaining how projects and interviewees were selected,
and what the different phases of the survey were.

A. Project and Participant Scope

Besides the FP6 the EU finances several project programs.
Partly these other programs run in parallel to the current
Framework Programme. One example is the eContentPlus4

program. But the Framework Programmes are also a series
of programs that are natural successors of one another.

We chose FP6 (as opposed to its successor FP7) because
the projects funded in this framework are already finished or
have at least reached a high degree of maturity. Additionally,
as no new projects will be funded in FP6, their total number
is known and remains constant. This is not the case with FP7
where the first projects started recently in 2009. Many projects
are in their early phases and it is still open, how many and
what other projects will be funded. Furthermore, newly started
projects might not yet have agreed upon all software engineer-
ing process implementations and their tool support.

We opted against FP5 (the predecessor of FP6, running from
1998 until 20025) because all its projects ended years ago, and
many people involved in these projects have probably changed
their affiliations since then; this is even more critical for aca-
demic institutions where personnel often has short-time con-
tracts. Furthermore, tools available in the year 2000 might not
be state of the art anymore; vice-versa today’s tools might
even not have existed at that time.

B. Survey Phase One: Addressing Coordinators

Three phases make up the conduction of our survey: con-
tacting coordinators, inviting participants, and finally evaluat-
ing the results. From February 9, 2009 until July 2, 2009 we
sent emails to the coordinators of the 1201 project listed in
the CORDIS6 (Community Research and Development Infor-
mation Service) database. CORDIS contains information on
European innovation and development provided directly from

4http://ec.europa.eu/information society/activities/econtentplus/
5http://cordis.europa.eu/fp5/
6http://cordis.europa.eu/home de.html

http://www.atlassian.com/software/jira/
http://ec.europa.eu/information_society/activities/econtentplus/
http://cordis.europa.eu/fp5/
http://cordis.europa.eu/home_de.html


C.R. Prause, R. Reiners, S. Dencheva — Empirical Study of Tool Support in Highly Distributed Research Projects 3

the EC. Our email contained information about the planned
survey, its contents and goals, and stated that we are work-
ing for the fellow EU project Hydra. A preliminary version
of the questionnaire was attached for preview. We reassured
to our participants that no results for a specific project would
be evaluated and presented. The coordinators were asked to
assess, if their project is a software project with respect to
the study, and if so, to name five different persons deeply in-
volved in software development. Coordinators were asked to
give feedback about the nature of their project in any case.

During this process, it turned out that CORDIS contained
34 duplicate entries for projects so that the total number of
projects is actually 1167. For 79 projects no contact informa-
tion form was available, four more projects were associated
with invalid information. We do not know how many coor-
dinators actually received our mails, as Hydra’s coordinator,
for example, went out of business a year before this study.
They were still listed in the database, yet contacting them
experimentally through CORDIS did not return an error. Fur-
thermore, some of the projects had ended a few years before
our survey, so it is uncertain if the coordinator was still con-
tactable through CORDIS. In the end, the number of project
coordinators addressed was 1084 but the number of coordina-
tors actually reached may be lower.

Out of these, 115 coordinators responded. As this number
exceeds one tenth of the 1084 contactable unique projects, we
consider following assumption as being representative: 42 co-
ordinators stated that no software was developed within the
project (e.g. Networks of Excellence or chip-design projects)
or that there was no software which would make sense in the
scope of the questionnaire (e.g. only simulations in Matlab).
73 coordinators responded that within their project, software
was developed. That means only approximately 63.5% of 1167
projects are developing software. Consequently, for our eval-
uation we assume a basis of 741 relevant projects.

C. Survey Phase Two: Inviting Participants

After the initial phase, we either immediately received
emails from the coordinators containing contact data of five
developers, or we received emails from volunteering project
members themselves as the coordinators had refrained from
giving out contact information, but instead circulated our con-
tact mail. This resulted in a high participation rate later on.

The personal invitations to individual online questionnaires
were mostly sent between August 18 and August 20, 2009
to avoid sending invitations on Mondays and Fridays as we
deemed these days unsuitable for answering a questionnaire.
Some of the emails of possible participants had become invalid
in the mean time. However, their number is negligible. Addi-
tionally, our questionnaire ended with an input field where
further candidates for the survey could be proposed. This re-
sulted in about 10% more responses.

D. Survey Phase Three: Data Refinement and Evaluation

After receiving the results which are presented in Section
III, typos and abbreviations entered into the optional free text

boxes had to be corrected and generalized. For instance, “svn”
was mapped to “Subversion” or “internal tools” to “custom”.
Where possible, some few simplifications (“JUnit+Clover” be-
came “JUnit/NUnit”) were also made in order to facilitate the
categorization of answers. Since we analyze general trends and
opinions, this generalization is considered as valid.

The questionnaire asked participants about their use of tools
locally in their group, and the use project-wide. By design
of the survey, it was possible to receive more than one re-
sponse per project. However, in some answers provided to
the “project-wide” questions, we encountered inconsistencies
that were difficult to resolve: for example, participants named
different tools supporting version control. It actually hap-
pened that one participant answered “Subversion”, another one
“None”, and a third one “CVS”. We assume from an in dubio
contra reo point of view that the answers are guesses; therefore
“None” was set. But it is also possible that the one answering
“None” is just not aware of the tool, while one of the oth-
ers just errs in the kind of tool. Hence, a “None” answer can
mean “don’t know”, whereas a “don’t know” can be as bad as
a “None” because a project-wide tool is useless if it is widely
unknown and not used.

In order to handle these inconsistencies, we derived a rule
specifying the consistency factor of given answers within the
same project. This means, that the first answer is taken but
does not influence the consistency factor. Every following an-
swer either confirms or confutes the first answer. Depending
on this rule, the consistency or inconsistency of the answers
is influenced. This rule was applied to all questions in order
to derive the consistency factor for the whole evaluation of all
questionnaires within one project. The overall answer consis-
tency factor is 59.7%; the number of consistencies (n > 300)
divided by the sum of consistent plus inconsistent answers.

In the evaluation each project is represented with the same
weight, no matter if one, two, three or more persons answered
for the same project. So, one response among several ones
for a project would then have proportionally less weight, e.g.
one half or one third. This method seemed to us the only fair
resolution to the problem.

III. THE QUESTIONNAIRE

In this section we provide a detailed description of the ques-
tionnaire and the answers we received. The presentation fol-
lows the original order of the questions.

In total, we sent out 243 questionnaires. Out of these, 91
were completely ignored and 46 were only partially com-
pleted. But 106 questionnaires (44%) were completed.

Questionnaires for 54 different projects (approx. 7.3% of all
software projects) were completed. The participating countries
were Germany (29.2%), Italy (10.4%), Spain (6.6%), Austria
(5.7%), United Kingdom (5.7%), the Netherlands, Slovakia,
Israel, Switzerland, France, Poland, Greece, Hungary, United
States, Finland, Belgium, Sweden, Lithuania, Czech Republic,
Canada, Cyprus, Denmark, and Norway. This list contains a
few non-EU countries that nonetheless supplied partners thus
giving EU projects a global dimension. We think that the high



C.R. Prause, R. Reiners, S. Dencheva — Empirical Study of Tool Support in Highly Distributed Research Projects 4

percentage of answers from Germany results from national and
corporate (Fraunhofer) togetherness, a generally high portion
of Germans in this field, and from contacts on a direct and
personal level. This is supported by the observation that several
people from other countries reacted to the invitation, but did
not finish the questionnaire.

A. Structure of the Questions

A short sentence introduced each question. The questions
were either single- or multiple-choice with examples of typical
tools in that area as to clarify what kind of answer is expected.
For example, for requirements management we presented a list
containing “Rational RequisitePro”, “Atlassian Jira” and oth-
ers. Questions typically offered an additional free-form field
into which participants could enter any other tool or a combi-
nation of tools they used.

Most questions consisted of two parts: One asking for what
approaches and tools participants use in their local workgroups
for the respective projects — the other one asking for what
is used project-wide. We added a special “Provided by
project” option to test for collaboration in the project: Par-
ticipants should select this option if there is a centralized tool
that is provided by the project, and that is used by the entire
consortium. But if a participant’s group and the whole project
use the same tool indeed but different installations then they
should not select this option but provide the same answer to
both questions.

Additionally, for most questions participants were asked to
share their personal opinion with us, and rate the usefulness
of the respective kind of tool.

B. Details on Questions and Answers

This section lists all questions with a short summary of the
answers. The answers are presented according to the agree-
ments in Section II-D in tables accompanying the questions.
For each table, only the five mostly chosen answers are listed.
The rest of the options is summarized to ”others” and is tex-
tually described when considered as appropriate. Next to the
list of the most favorite tools, personal views regarding the
usefulness of this kind of tools ranging are shown. Possible
values range from 1 (not useful) to 5 (absolutely useful).

Q1 - Project Management: Tool supported project manage-
ment is done a lot in research projects (cf. Table I). This holds
especially true for project-wide project management, where
only a few percents of the projects do not have project manage-
ment. The researcher’s opinions are mainly positive towards
project management. Yet, project management is often done
using office applications (including OpenOffice).

Microsoft tools dominate this field with MS Project be-
ing the mostly used dedicated project management tool. Some
groups/projects additionally rely on SharePoint. But other tools
like ACollab, Google Calendar, diverse issue trackers, or even
custom applications are used, too.

Grp. Proj.
MS Office 27% 27%
MS Project 25% 22%
Office + Visio 10% 5%
Jira 3% 3%
Other 13% 15%
Don’t know 2% 20%
None 11% 12%
Prov. by proj. 13%
Σ 106 54

Grp. Proj.
1 3% 5%
2 10% 18%
3 40% 33%
4 37% 37%
5 10% 7%
∆ 8 22
Σ 98 84
1=Not, 2=Few,
3=Fair, 4=Good,
5=Absolutely

TABLE I: Project Management & Opinions

Grp. Proj.
MS Office 7% 8%
Jira 3% 4%
eRoom 3% 2%
DOORS 2% 0%
Other 6% 4%
Don’t know 10% 23%
None 58% 60%
Prov. by proj. 14% 1%
Σ 106 54

Grp. Proj.
1 11% 21%
2 23% 21%
3 34% 36%
4 24% 17%
5 7% 5%
∆ 36 40
Σ 70 66
1=Not, 2=Few,
3=Fair, 4=Good,
5=Absolutely

TABLE II: Requirements Management & Opinions

Q2 - Requirements Management: Requirements manage-
ment plays a vital role in many software processes, be it clas-
sical or agile ones. Requirements justify the software develop-
ment in commercial projects. However, its value for research
projects is disputed because it is not clear in advance where
the research is going to. But requirements capture decision ra-
tionale that is indispensable for reuse. Results and opinions on
tool-supported requirements management in workgroups and
project-wide are shown in Table II.

Many EU research projects are subsidized but no concrete
goals are defined. The project Hydra, for example, has a so-
phisticated requirements process [16], and is very successful,
yet development is not that requirements-driven as intended in
the beginning.

Tool supported requirements management is done rarely but
is very often judged with at least “fair” usefulness by more
than half of the survey participants. It is a candidate where
actual use needs to catch up on expectations. Other tools used
by research project include DOORS, Rational RequisitePro,
office documents, and bug trackers.

Q3 - Architectural Design: Creating the architectural design
of software is the task of software architects who frame the
general design of software before it gets into the implemen-
tation phase. It is the typical domain of modeling languages
like UML. This is also reflected in the results of our survey
where we asked what tools are used by researchers in order to
create their architectural design specifications in their groups
and project-wide, respectively (cf. Table III).

Besides dedicated architecture tools like Enterprise Archi-
tect or Rational Architect, plain office and LATEX documents
in combination with graphs from Visio (and a host of other
UML tools like Poseidon, UMLet, etc.) are used in almost all



C.R. Prause, R. Reiners, S. Dencheva — Empirical Study of Tool Support in Highly Distributed Research Projects 5

Grp. Proj.
Office + Visio 35% 25%
MS Office 26% 30%
Entpr. Architect 13% 10%
Rational Architect 5% 0%
Other 12% 9%
Don’t know 2% 25%
None 3% 4%
Prov. by proj. 7%
Σ 106 54

Grp. Proj.
1 1% 6%
2 6% 8%
3 40% 38%
4 34% 35%
5 19% 13%
∆ 4 21
Σ 102 85
1=Not, 2=Few,
3=Fair, 4=Good,
5=Absolutely

TABLE III: Create Design & Opinions

research projects to create architecture design specifications.
More exotic approaches are white-board drawings in combi-
nation with digital cameras for distributing designs to remote
teams.

Q4 - Documentation and Communication:
(a) Sharing of Documentation and Specifications Docu-
mentation and specification of software architectures and its
components is an important part of the software engineering
process [19]. In a distributed project with different sub-teams
working under one ”common roof”, up-to-date documents are
necessary. Table IV shows what kinds of tools are used in or-
der to share documentation and to keep it up to date. It also
presents an overview of the tools used for that purpose. Sev-
eral answers were allowed since normally, more than one tool
is used or different ones are combined.

From the results we see that email communication is widely
used, as well within one group as throughout the whole project.
It seems to be accepted to send plain text information together
with eventually attached specifications. The resulting personal
overhead and obvious disadvantages for every recipient seem
to be tolerated. Deliverables are another important kind of
documenting mechanism, though there is the danger that these
polished documents are not alive and easily grow out of date.

More collaboration-oriented tools like Wikis and shared
workspaces (e.g. BSCW) or network drives are quite promi-
nent in groups and projects. Also version control tools like
Subversion are used to organize, update and distribute shared
documentation.

(b) Typical Means of Communication: When asking for
documentation and sharing mechanisms, we regarded the per-
sonal communication within a project as a linked aspect to
documentation. Communication is the basis of collaboration.
In order to be able to agree on architectures and strategies,
personal communication via audiovisual channels or text ex-
change is vital. We asked how communication during the
project progresses happened and what tools were used for that.
For the answer, several options could be chosen but the partic-
ipants were asked to only choose tools they use at least once
a week.

Most participants rely on email and mailing list communi-
cation (cf. Table IV). After these often named options came
phone calls and personal meetings. Only one third harnesses
instant messaging for spontaneous and in-between communi-

Use
Personal email 87%
Mailinglists 71%
Telephone 53%
Meetings 44%
Instant Mess. 33%
Wiki 19%
Video confer. 13%
Skype 5%
Σ 106

Grp. Proj.
Email 61% 67%
Deliverables 35% 61%
Wiki 29% 32%
BSCW 17% 26%
Shared drive 29% 13%
Subversion 12% 11%
Don’t know 0% 2%
Prov. by proj. 32%
Σ 106 54

TABLE IV: Communications & Document Sharing

Grp. Proj.
Subversion 58% 42%
CVS 13% 6%
SourceSafe 3% 0%
GForge 0% 2%
Other 4% 4%
Don’t know 2% 21%
None 14% 27%
Prov. by proj. 9%
Σ 106 54

Grp. Proj.
1 0% 4%
2 5% 10%
3 8% 17%
4 44% 44%
5 43% 26%
∆ 10 28
Σ 96 78
1=Not, 2=Few,
3=Fair, 4=Good,
5=Absolutely

TABLE V: Version Control Tools & Opinions

cation though this is a key factor to project success in dis-
tributed projects [13]. Wikis and video conferencing are also
named but their usage is rather uncommon.

Q5 - Software Configuration Management: Originating
from a US military standard of the 1960s, software configura-
tion management is one of the oldest and most widely accepted
software engineering tools, even older than software engineer-
ing itself. Opinions about and results for managing software
configuration items (especially source code) with version con-
trol systems can be found in Table V.

There is full agreement on the usefulness of this kind of
tools that is supported by high actual use ratios. Even project-
wide there is a high agreement that version control should
be used. However, there is a low “provided by project” ratio
suggesting that there is no common version control but lots of
local sub-projects.

Though free and centralized version control systems hugely
dominate, distributed or commercial ones like Git, Mercu-
rial or Plastic SCM are also used. Some groups/projects use
BSCW or FTP folders for their configuration management.

Q6 - Test Plan and Test Management: Test plans document
and describe the testing approach including the tests to be
performed as well as the expected results [1]. Some tools,
like HP Quality Center, help managing the interplay between
testers and developers, and generate reports.

See Table VI for detailed results on how test plans are man-
aged, and personal opinions about test plans. Mostly simple
text files are used in almost one third of the projects to specify
and maintain a test plan. This was stated for groups as well as
projects. None of the groups/projects had a standards confor-
mant test plan. Spread sheets are the next often used alterna-



C.R. Prause, R. Reiners, S. Dencheva — Empirical Study of Tool Support in Highly Distributed Research Projects 6

Grp. Proj.
Simple text 33% 23%
spread sheet 32% 22%
custom 3% 0%
eRoom 1% 1%
Working examples 0% 1%
Other 4% 2%
Don’t know 3% 25%
None 27% 28%
Σ 106 54

Grp. Proj.
1 8% 13%
2 20% 12%
3 41% 46%
4 22% 22%
5 9% 7%
∆ 16 30
Σ 90 76
1=Not, 2=Few,
3=Fair, 4=Good,
5=Absolutely

TABLE VI: Test Plan & Opinions

Grp. Proj.
JUnit/NUnit 34% 20%
custom 2% 0%
Hopper 1% 0%
Visual Studio 1% 0%
unknown 0% 1%
Other 4% 1%
Don’t know 0% 5%
None 60% 75%
Σ 106 54

Grp. Proj.
1 16% 30%
2 7% 13%
3 29% 28%
4 29% 21%
5 19% 8%
∆ 33 45
Σ 73 61
1=Not, 2=Few,
3=Fair, 4=Good,
5=Absolutely

TABLE VII: Unit Testing Tools & Opinions

tive — again concerning groups and project-wide agreements.
26% and 28%, respectively, responded that there was no test
plan or management. Besides above alternatives, some groups
and projects make use of Mantis, SiTEMPPO or Testlink.

Q7 - Automated Unit Testing: This question aims at finding
out whether unit testing plays a role in software development at
all. We defined that test coverage should be at at least 20%, to
ensure that we only capture serious testing. Otherwise, ”None”
should be chosen as answer. Results and opinions concerning
unit testing are shown in Table VII.

Half of the groups stated that no testing is applied; 75%
for projects. Those groups and projects that do testing almost
only rely upon JUnit or NUnit tests. A small percentage uses
other tools like GoogleTests or Yaffut.

Within groups and projects more than two thirds rate the
usefulness of unit testing at least “fair”, though there are some
deniers. There is a basic acceptance for testing.

Q8 - Continuous Integration: Continuous integration origi-
nates from Extreme Programming to support agile software de-
velopment. An dedicated server regularly (e.g. nightly) builds
the software in a clean environment and automatically runs
tests. Hence, version control, automated build scripts and unit
tests are necessary. This implies additional work for server set-
up and writing non-IDE build scripts, but gives confidence that
submitted code always compiles, and that errors are quickly
detected and therefore cheap to fix [17].

Table VIII shows that the general acceptance of continu-
ous integration is very low, especially in groups. Almost three
quarters state that within groups and project-wide, continu-
ous integration plays no role. Maybe the cost for server setup
and prerequisites like unit tests are considered as too much

Grp. Proj.
Hudson 4% 4%
CruiseControl 3% 3%
Team Found. Server 3% 1%
QuickBuild 2% 2%
Other 3% 4%
Don’t know 6% 19%
None 78% 71%
Prov. by proj. 3%
Σ 106 54

Grp. Proj.
1 27% 35%
2 18% 18%
3 21% 33%
4 27% 9%
5 6% 5%
∆ 44 51
Σ 62 55
1=Not, 2=Few,
3=Fair, 4=Good,
5=Absolutely

TABLE VIII: Continuous Integration & Opinions

Grp. Proj.
Meetings, no tool 51% 31%
Jupiter for Eclipse 2% 0%
Visual Studio 1% 0%
Git 1% 0%
Other 2% 0%
Don’t know 3% 16%
None 38% 55%
Prov. by proj. 3%
Σ 106 54

Grp. Proj.
1 9% 21%
2 16% 26%
3 47% 33%
4 21% 14%
5 7% 6%
∆ 25 40
Σ 81 66
1=Not, 2=Few,
3=Fair, 4=Good,
5=Absolutely

TABLE IX: Code Reviews & Opinions

overhead.

Q9 - Code Reviews: Compared to other quality assurance
measures code reviews are considered rather cheap. Yet they
are capable of detecting a wide range of software defects, espe-
cially those for which a deeper understanding of the software
is necessary, and hence are well-known in industrial and open
source software development [18].

The answers to our questions (see Table IX) show that the
acceptance of reviewing is high (especially in groups). Note
that this time we did not ask for tools but whether reviews are
executed at all; multiple answers to this question are possible.
Half of the developers engaged in EU research projects do
code reviews, and many consider reviewing fairly useful. But
besides Jupiter for Eclipse, tool support is limited to text doc-
uments and web forms. Poor tool usage makes cross-partner
reviews difficult and hence this option — although being a
proposed answer — was not selected.

Q10 - Bug Tracking: Bug tracking means to manage en-
countered software errors and to keep track of the system’s
current status. Though it may be more practical when dealing
with customers in big projects in which communication paths
are complicated or the time-to-fix is long, it is still considered
a very pragmatic process to follow [17].

Opinions on bug tracking, and results for groups and
projects are shown in Table X. Many research projects do not
establish error management processes; bugs are tracked via
email communication. Within groups, the need for this kind
of tools is considered as more important. Less commonly used
other tools are Redmine, eRoom, Rational Jazz or GForge.

Q11 - Static Code Analysis: Again, several answers could



C.R. Prause, R. Reiners, S. Dencheva — Empirical Study of Tool Support in Highly Distributed Research Projects 7

Grp. Proj.
MS Office 12% 10%
BugZilla 13% 9%
Trac 16% 5%
Jira 6% 7%
Other 13% 7%
Don’t know 3% 19%
None 34% 46%
Prov. by proj. 8%
Σ 106 54

Grp. Proj.
1 8% 14%
2 8% 16%
3 26% 32%
4 42% 29%
5 15% 9%
∆ 22 30
Σ 84 76
1=Not, 2=Few,
3=Fair, 4=Good,
5=Absolutely

TABLE X: Bug Tracking Tools & Opinions

Grp. Proj.
IDE built-in 60% 38%
CheckStyle 4% 3%
FX / Style cop 1% 2%
PMD 2% 1%
DevPartner Studio 2% 0%
NetBeans 1% 1%
None 42% 42%
Prov. by proj. 3%
Σ 106 54

Grp. Proj.
1 8% 20%
2 14% 13%
3 33% 35%
4 33% 22%
5 13% 10%
∆ 20 46
Σ 86 60
1=Not, 2=Few,
3=Fair, 4=Good,
5=Absolutely

TABLE XI: Static Code Analysis Tools & Opinions

be given. Static code analysis supports the developer while
writing code through finding syntactical or low-level semantic
errors in code without executing the code. Modern IDEs have
built-in static analysis features and often suggest solutions to
detected problems in tooltips. The results are shown in Table
XI (The table shows how many groups use a respective tool;
some use the IDE built-in functionality and additionally some
other tool).

Surprisingly, there is a high rate of ”None” answers. Almost
every second group does not use any kind of static analysis.
Either participants ignore their IDEs support or they misunder-
stood the question, because they regard the built-in methods
as state-of-the-art and wonder what other tools could be used.
As nobody selected “don’t know”, everybody seems to have
a notion of code analysis. But even more developers profit
from IDE built-in analysis. The high acceptance for this is il-
lustrated by the opinions, although for an effort-free feature,
rejection is quite high.

Q12 - Software Metrics: Measurement plays an important
role in engineering and quality assurance. Though metrics are
not error-proof, they are the basis for objective evaluation
methods, and iterative improvement [11].

The results for this multiple-choice question are shown in
Table XII. The general opinion is that half of the participants
regard metrics as not useful for these projects. The numbers
for groups and projects are quite similar. Also concerning the
application of these metrics, more than half of the participants
stated that it is not used; both in groups and project-wide.

Q13 - Code Reuse: Planning to reuse code is an important
argument for code quality. Code quality, conversely, is an im-
portant argument for reusing code. Hence, it is important to

Grp. Proj.
Code coverage 14% 9%
Lines of Code 16% 6%
FPA 11% 7%
Cycl. compl. 4% 1%
Static P. Count 1% 0%
siMetrics 1% 0%
None 58% 54%
Prov. by proj. 10%
Σ 106 54

Grp. Proj.
1 22% 30%
2 16% 19%
3 38% 35%
4 21% 13%
5 3% 4%
∆ 33 52
Σ 73 54
1=Not, 2=Few,
3=Fair, 4=Good,
5=Absolutely

TABLE XII: Software Metrics & Opinions

Groups Projects
Less than 5 64% 5%
Less than 10 33% 30%
Less than 20 4% 24%
Less than 40 1% 34%
40 or more 0% 9%
Σ 106 106

TABLE XIII: Code Contributors

know how research deals with the problem of code reuse. Par-
ticipants should indicate how much software from a previous
project they reuse and if they are planning to reuse code from
the current project in future ones.

Participants chose between several discrete estimation val-
ues from 0% to 100%. The results show that (in the average)
participants are reusing 27% of the code of former projects
within their group, and 27% project-wide.

In the future they are planning to reuse 52% of the code
within the group and 47% of the entire project. This is more
than the actual reuse of old code.

Q14 - Number of Contributors: Local developer groups at a
partner’s site are rather small. They often have no more than 5
contributors, and rarely more than 10. However, EU projects
are often bigger having up to 40 developers and sometimes
even more than that (see Table XIII). Concerning the profes-
sional background of the participants in our study, most of
them are applied researchers from academia (cf. Table XIV).
The second largest group is represented by Industry Research
& Development departments. Participants from fundamental
research and industrial Products & Sales are a minority.

C. Participants Remarks

In this section we sum up on selected participant remarks
that were submitted along with the questionnaires.

Affiliation role
Academic - Fundamental Research 7%
Academic - Applied Research 55%
Industry - Research & Development 36%
Industry - Products & Sales 2%
Don’t know 1%
Σ 106

TABLE XIV: Participant Role



C.R. Prause, R. Reiners, S. Dencheva — Empirical Study of Tool Support in Highly Distributed Research Projects 8

The projects under study are, of course, research projects.
A few participants wrote a remark along the lines that they
only develop for researching and prototyping. The concepts
are what they want to reuse, and not the software. Likewise,
they do not deliver their results to customers, and therefore
argue that software engineering best practices are not applica-
ble for them. We are aware of the fact that software is rather
experimental and not delivered to customers but do not agree
that a multi-million Euro project builds software only to throw
it away.

The team size is another reason why full-scale processes
are considered inappropriate, e.g. if there are only two pro-
grammers sitting in adjacent rooms while working on imple-
mentations. By some, tool support besides a common CVS is
considered a waste of efforts. Those argue that it was better
to invest in building the actual software than to spend efforts
on setting up processes. Justifications for (perceivably few)
own usage of tools are that the developments are small and
therefore easy to understand and manage. Or, less seriously,
extreme quality targets that make bug trackers superfluous:
one respondent answered that they cannot afford to track bugs
because instead their philosophy is to fix them immediately
when they occur. Other projects struggle with the fact that
each group applies a different development methodology. In
general, many processes are simplified and poorly extend to
collaborating groups.

One suggestion was to concentrate on industrial projects in-
stead as studying tool usage here may be disappointing. How-
ever, it was exactly our intention to study this kind of projects
and this is the reason for this survey.

Service-oriented architectures (SOA) were also quoted a few
times as a reason for having only a few integrated processes.
The different subsystems of a SOA application are deployed to
different machines and then connected through network calls.
Every team can hence develop its parts more or less in isola-
tion, and only needs to communicate interfaces to the others.
From our own experience, however, we can tell that such or-
ganic development (without a clear architecture) tends to build
a software system that is also quite confusing. It is a fallacy
to think that a new implementation technology can solve all
the problems of the software life cycle.

IV. THREATS TO VALIDITY

There are many research projects which unfortunately did
not responded to our invitations. Reasons for not answering
are possibly low interest in software engineering, or being
overwhelmed by the spectrum of best practice tools presented
in our questionnaire. Yet, seven out of eight people who started
their questionnaires filled it out completely. Hence, we think it
is plain disinterest in participating in a survey. Still we regard
the 106 responses for almost 10% of the projects as significant.

Participants in the roles of applied researches and re-
searchers from industry are the vast majority of people in this
study. We think the reason for this is that these are the two
groups of people that mainly do EU research projects. They
are therefore not severely overrepresented.

The response consistency factor of project-wide responses is
below 100% (see Section II-D). This indicates some insecurity
in the responses. Still the majority of answers is consistent and
we gave a very tight definition of consistency.

A limitation of this study is that tool usage is vaguely de-
fined, and does not guarantee quality. If, for example, there
is a common Subversion repository in the project, it does not
mean that it is actively used. Similarly, even if the tool is ac-
tively used, it does not mean that it is used correctly. But for
an empirical study that wants to draw a broad picture this is
still acceptable.

Another danger is that often many small developments are
made within the individual groups of the consortium while
our questionnaire covers many aspects of full-size software
projects. This is due to technical heterogeneity in sub-tasks.
In the scope of the project these implementations are then
integrated later. Here integrated development with the partic-
ipation of all partners is hard to realize.

Additionally, some research projects are very heteroge-
neous: a common, project-wide implementation is not al-
ways intended. Service oriented architectures allow widely
autonomous development of software parts. Other projects
are concerned with the development of embedded firmwares
that have to be small and energy-efficient, or are purely
optimization-oriented which makes standard tool support over-
sized for the scaled down processes. Sometimes, a small team
first develops the software and then forwards it for integration
to key researches actually working for the project’s vision. Di-
rect contribution within the project is therefore not possible.
However, the number of such projects is small and we invited
only software development projects. Several projects opted out
or were rejected in the first phase of our study.

So, because of the diversity in research projects, partners
and goals, it is difficult to make generally valid and all-
encompassing assumptions. However, we enabled a valid in-
sight into research practice.

V. LESSONS LEARNED

Analyzing the survey results, we summarize that the back-
bone of projects is mostly considered as important and applied
within the projects’ landscape. These namely are project man-
agement (Q1), architectural design (Q3) and code management
tools like SCM (Q6). Shared tools, and communication and in-
formation infrastructures are set up and used regularly.

When it comes to documentation and communication be-
sides project management issues, the answers revealed that
lots of communication takes place via email (Q4a/b). How-
ever, pieces of documentation and specification are very often
sent via this channel, too. Similarly, there is astonishingly few
requirements management (Q2) that could capture concept and
design rationale. This leads to scattered information and causes
organizational overhead for recovering and (re)organizing the
information later (for example, an attempt to automate this
process for an EU project was [14]). About one quarter of the
projects already provide the technical infrastructure to collab-



C.R. Prause, R. Reiners, S. Dencheva — Empirical Study of Tool Support in Highly Distributed Research Projects 9

orate and exchange knowledge in a managed way, for example
via the BSCW system or administered Wikis.

Considering test plans and the management of tests (Q6),
automated unit testing (Q7) and continuous integration (Q8),
the collected answers reveal that these aspects of quality assur-
ance and bug fixing are missing in many projects, or processes
are set up but not maintained and applied consequently.

Code reviews and managed issue tracking (Q9 an Q10) are
both considered as important, especially within the projects’
sub-groups. Consequent tool-supported processes, however,
are still lacking. The same applies to coding rules (Q13).
Although considered as helpful and supportive, development
goes on in various individual styles that are hard to combine,
maintain and refactor for future purposes.

As consequence from the results, especially concerning Q4,
Q6, Q7-Q10 and Q13 we see a difference from large-scale
sales-oriented industry projects in terms of management, co-
ercion and constraints. We make this assumption due to the
highly distributed nature of research projects and the lower
pressure from project management which only has limited
power over partners that want to preserve their independence.
Each change in regulations or organizations up to project de-
mands and duties is very often based upon new negotiation
where to much pressure from the management side may re-
sult in demotivation, frustration and finally worse results.

From the study we learn that even agile methods are rejected
as heavy-weight, e.g. continuous integration or test-driven de-
velopment. Coding rules are accepted and wanted, but enforce-
ment is missing (which is considered even worse [7]). The
discrepancy between expected reuse of software (47%/52%)
and actual reuse (27%) shows that a desire for improvement
is there. Possibly there is a discipline problem in EU projects
that could be addressed with software process improvement
programs or maturity models like CMMI; but may be there is
also a need for adapted or all-new tools.

Generally, group-wide solutions are more accepted than
project-wide solutions. Project-wide solutions are nonetheless
mostly regarded useful. Their implementation as indicated by
the “Provided by project” responses is very low, often around
10% or lower. This shows that project-wide processes have yet
to be established, although appropriate tool support for soft-
ware processes is extremely important in a distributed setting
to reduce the effects of hampered communication, control and
coordination [5]. However, we are aware that bringing together
two different company’s processes is a complicated and time
consuming task on its own (e.g. [20]), especially if it is only
for the duration of a single project of a few years.

Naturally, the goals of research projects are a bit differ-
ent from conventional software projects. But from the study
results and participant remarks we register that another im-
portant difference is how researchers perceive themselves and
their projects: there is some sympathy for software engineer-
ing methodology but the cost for establishing and maintaining
according processes is too high for a community that very
much appreciates its freedom and equality. Any methodology
or process that is applied top-down risks to be rejected as

cumbersome, and there is no superior force that could help
overcome initial resistance, e.g. for bug tracking. Acceptance
for anything can only come bottom-up.

Solutions should consider the size of projects (number of
participants), existing tool support but also the need for in-
creasing the individual partners’ motivation on community-
based levels. In our experience, personal, friendly and some-
times patient conversation tones lead to more success and bet-
ter contributions than putting pressure on partners. Future re-
search has to focus on approaches that lead to higher individual
motivations (e.g. incentives) to follow certain processes, and
to increase the quality of software as well as documentation
and communication. All this cannot be achieved by force.

VI. SUMMARY

This work describes a survey among participants of EU re-
search projects. Several persons from research projects of FP6
were invited to an online questionnaire that interviewed them
on their use of tools and their personal opinions on the use-
fulness of that kind of tools. The survey shows what methods
are applied in this large software field. Also opinions and the
overall acceptance for such methods is presented.

We acknowledge that research projects have some differ-
ences compared to industry and open source. From our par-
ticipants’ remarks we see that many share this assumption.
But research projects also share properties with industry and
open source. For example, research projects receive fund-
ing from external bodies and are responsible to them; they
must carefully plan and manage their resources. With open
source projects, research shares freedom and intrinsic moti-
vation through research interests. Friendly cooperation and
voluntary contribution are key features. Both, EU and open
source projects, have a high degree of spatial distribution,
which shown to negatively impact process maturity and there-
fore software quality [5], [6].

In research projects, software quality and reuse are consid-
ered lesser goals. Nobody expects flawless operation from a
prototype, but novelty. Collaboration and gain of new knowl-
edge are important. However, we argue that quality has its
space there, too. Reuse and some degree of quality increase
productivity, which is interesting for research projects as well.

Many groups and projects plan to reuse code in the future,
but actual reuse is low. We argue that there might be a dis-
cipline problem that is due to the special nature of research
projects and cannot be addressed with standard industrial tools.
Similarly, workflows are not suited to EU project needs. How-
ever, tools for design, documentation & communication, ver-
sion control and coding rules are considered as useful, though
they need to be woven into project life cycles more closely.

We are convinced that software development in EU projects
can profit from tools and processes that are tailored to
this kind of distributed software development. Increasing the
reusability of software results from such research projects
means to shorten the time-to-market considerably, which is
of paramount importance for European competitiveness; fail-
ing to do so means to lose economic opportunities. Therefore,



C.R. Prause, R. Reiners, S. Dencheva — Empirical Study of Tool Support in Highly Distributed Research Projects 10

our claim is that well-suited processes and tool support in-
creases communication within the consortium, flexibility of
the research process, and quality of developed software pro-
cess artifacts. Only this enables efficient exploitation of results,
and gives EU the much needed return on investment.

One might be tempted to shrug off the image of distributed
software development drawn by this study because it was only
research. But this would do the study wrong: it presents a view
of today’s distributed development practice as it includes a
broad variety of software organizations. Reflection is the first
step towards the improvement of a situation, and it shows
which software engineering ideas and tools can survive in the
development wilderness outside of large companies. This sur-
vival in different contexts is a key component in the evolution
of software engineering ideas [10]. EU projects and global
software development have many aspects in common.

Since findings are based on EU projects, we focus on prob-
lems that occur from spatial distribution of partners. Although
socio-cultural, distance and time differences are smaller than
in global development, they cannot be neglected wholly.

VII. PERSPECTIVE

As a consequence of our experiences and the survey, we
want to shape the idea of Research Software Engineering,
not for a single-person-proof-of-concept-prototype-project-at-
a-University but for highly distributed collaborative projects
like EU projects. We want to find out how tools and workflows
have to be adopted for that purpose. A major issue within this
concept is the motivation of each contributor because enforce-
ments and strict rules — possibly combined with some kind
of coercion — will neither work nor strengthen collaboration.

Consequently, agile tools (e.g. version control, documenta-
tion and continuous integration) should be woven into a frame-
work that provides the technical basis for software engineering
but does not formulate strict rules. Such an approach would
rely on weak processes and the provision of basic tools. Mo-
tivation to follow the processes comes from self-commitment
and through improving the awareness for the ”social respon-
sibility” everyone carries: since everyone participates in the
development process, everybody benefits or suffers from the
contributions of the others. This way, a community can be
formed. Additional mechanisms to explore are how to trigger
motivation through market-based models (e.g. [4]) or through
sportive competition (e.g. [15]). It could be based on incentives
or status within the community. The social value of individual
contributions to the project can be valued based on the quality
of code or provided documentation (e.g. [9]). However, it is
important that the evaluation of the individuals’ contributions
comes from the community and not from one commanding
entity judging the work. Of course, there is no mechanism to
punish contributors as this would be a dead end for motivation.
We expect from this approach an increase in maintainability
and understandability of the software sources, and hence more
reuse of code and components.

Future work will cover the introduction of tools tailored to
this kind of software development, and the analysis of different

aspects of incentives systems for distributed development. This
includes observations of effects on the individuals’ motivation
as well as development of communities and their reactions.

ACKNOWLEDGMENT

The research reported here was supported by the HYDRA
EU project (IST-2005-034891). Thanks to Markus Eisenhauer
for his hints on the survey design. We are deeply indebted to
our survey participants for their faith in us and the time they
spent with our questionnaire.

REFERENCES

[1] IEEE Std. 829 – software test documentation, 1998.
[2] IEEE Std. 1074-2006: Standard for developing a software project life

cycle process, 2006.
[3] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh.

Using static analysis to find bugs. IEEE Software, 25:22–29, 2008.
[4] D. F. Bacon, Y. Chen, D. Parkes, and M. Rao. A market-based approach

to software evolution. In 24th ACM SIGPLAN conference companion
on Object oriented programming systems languages and applications,
pages 973–980, New York, NY, USA, 2009. ACM.

[5] E. Carmel and R. Agarwal. Tactical approaches for alleviating dis-
tance in global software development. IEEE Software, 18(2):22–29,
March/April 2001.

[6] M. Cataldo and S. Nambiar. On the relationship between process ma-
turity and geographic distribution: an empirical analysis of their impact
on software quality. In ESEC/FSE ’09. ACM, 2009.

[7] L. E. Deimel and M. Pozefsky. Implementation of programming stan-
dards in a computer science department. In Proceedings of the 17th
Annual Southeast Regional Conference. ACM Press, 1979.

[8] B. J. Dempsey, D. Weiss, P. Jones, and J. Greenberg. Who is an open
source software developer – profiling a community of linux developers.
Communications of the ACM, 45(2):67–72, February 2002.

[9] S. Dencheva, C. R. Prause, and A. Zimmermann. Collaborative moder-
ation - fostering creativity with a corporate wiki. In Workshop on Meth-
ods & Tools for Computer Supported Collaborative Creativity Process:
Linking creativity & informal learning, 2009.

[10] H. Erdogmus. Déjà vu: The life of software engineering ideas. IEEE
Software, 27:2–5, 2010.

[11] N. E. Fenton and S. L. Pfleeger. Software Metrics — A Rigorous and
Practical Approach. Thomas International Computer Press, second edi-
tion, 1997.

[12] M. Grechanik. Attracting industry partners to software engineering re-
search. SIGSOFT Softw. Eng. Notes, 34(6):4, 2009.

[13] T. Niinimäki and C. Lassenius. Experiences of instant messaging in
global software development projects: A multiple case study. In Inter-
national Conference on Global Software Engineering (ICGSE’08). IEEE
Computer Society, 2008.

[14] C. Prause, J. Kuck, S. Apelt, R. Oppermann, and A. B. Cremers. Inter-
connecting documentation - harnessing the different powers of current
documentation tools in software development. In J. Cardoso, J. Cordeiro,
and J. Filipe, editors, Proceedings of the Ninth ICEIS, volume ISAS,
pages 63–68. INSTICC, 2007.

[15] C. R. Prause and S. Apelt. An approach for continuous inspection of
source code. In Proceedings of the Sixth International Workshop on
Software quality (WoSQ), New York, NY, USA, 2008. ACM.

[16] C. R. Prause, M. Scholten, A. Zimmermann, R. Reiners, and M. Eisen-
hauer. Managing the iterative requirements process in a multi-national
project using an issue tracker. In 3rd International Conference on Global
Software Engineering. IEEE, 2008.

[17] J. Richardson and W. Gwaltney. Ship it! A Practical Guide to Successful
Software Projects. Pragmatic Bookshelf, 2005.

[18] P. C. Rigby, D. M. German, and M.-A. Storey. Open source software
peer review practices: A case study of the apache server. In International
Conference on Software Engineering (ICSE’08). ACM, 2008.

[19] N. Rozanski and E. Woods. Software Systems Architecture. Addison-
Wesley, 2005.

[20] B. Sechser. The marriage of two process worlds. Software Process
Improvement and Practice, 14:349–354, June 2009.


	Introduction
	Survey Scope and Realization
	Project and Participant Scope
	Survey Phase One: Addressing Coordinators
	Survey Phase Two: Inviting Participants
	Survey Phase Three: Data Refinement and Evaluation

	The Questionnaire
	Structure of the Questions
	Details on Questions and Answers
	Participants Remarks

	Threats to Validity
	Lessons Learned
	Summary
	Perspective
	References

